Surviving Client/Server:
Managing User Logins, Part 3

by Steve Troxell

his month, we’ll make our final
improvements to the TLogin-
Manager component we’'ve been
building. As before, we’ll be revis-
ing code we first built in previous
issues. To save space, I'll only show
partial code listings to point out
changes made to previous code.
The complete code for the
TLoginManager system can be found
on this month’s companion disk in
the SURVIVE directory.

Server/Database Overrides
The first new feature we want to
implement is a runtime override
for the server name and/or data-
base name defined in the alias.
Normally Delphi applications know
which physical database to con-
nect to through a definition within
an external BDE alias. The alias
name is hardcoded within the
application’s TDatabase.AliasName
property. If we want to connect to
a different database, we change the
alias definition through the BDE
Configuration Utility.

However, sometimes even this
level of flexibility is not enough.
You may have several versions of
your database on one server: most
recent stable build available for
demos, a work-in-progress build, a
testing build, individual versions
for each developer, etc. Or, you
may have different physical serv-
ers such as a development server
at one location and the demonstra-
tion and testing server at another.
As you distribute copies of the ap-
plication around to these various
sites, it is out of the question to
keep changing the hard-coded alias
name within the application and
cumbersome to say the least to
expect people to keep redefining
the same alias within the BDE
Config Utility.

Our solution is to keep a static
BDE alias definition and introduce
“overrides” for the server and

February 1997

database whenever they differ
from the “defaults” defined by the
application. One way to implement
this would be to use an INI file to
define the override values. If no INI
file information is found, then the
default values from the application
are used as normal. Another ap-
proach would be to have the user
enter or select a server/database
name when they attempt to login,
with one option being the “default”
database.

Database parameter values in
the TDatabase.Params property take
precedence over values for the
same parameters defined in the
external BDE alias. Therefore to
implement a runtime override for
either the server or the database to
connect to, we simply assign the
correct parameter values through
TDatabase.Params before we con-
nect the database component.

We’ll add the SetServerName and
SetDatabaseName methods to
TLoginManager which will allow us
to set these parameters should we
detect overrides at runtime. In
addition, if we set one of these
parameters to an empty string
value, we will take that to mean
“restore to the original value
provided by the application”. We’'ll
also provide two read-only proper-
ties to show the current values for
each of these parameters. The
additional code we need in
LOGIN.PAS is shown in Listing 1
(over the page).

Since the override values must
be set in the application’s TDat-
abase component, and because
there are various ways to obtain
the override values (INI file, dialog,
etc), we won’t make any assump-
tions about which comes first,
setting the override values or set-
ting the MainDB property. We will
write our code safely enough such
that neither is dependent on the
other occurring first.

The Delphi Magazine

The first thing we must take into
account is that the “default” value
for the server or database name
could come from one of two
sources. Obviously the BDE alias is
one place. But less obviously, the
calling application could have de-
fined its own values within its TDat -
abase component (independent of
TLoginManager). Since we will be
writing our override values within
the TDatabase’s parameters, we’ll
destroy any value that might al-
ready be there. In order to provide
the ability to restore to default val-
ues, we’ll need to capture the exist-
ing values when the TDatabase
component is registered through
the MainDB property.

The first thing we need is the
helper method GetDBParamValue.
We’ll use this to obtain the existing
values from the application. When
given a database parameter name,
this method returns the corre-
sponding value defined in the ap-
plication’s TDatabase component.
Failing that, it extracts the value
from the BDE alias definition by
reading the Session variable.

Next, we’ll modify the SetMainDB
method to capture the existing
name values. If no name overrides
have been defined yet, these same
values are used as the return
values for the ServerName and
DatabaseName properties.

If name overrides have already
been defined, we set them in the
TDatabase component using the
SetDBParamValue helper method.
Remember last month we added an
internal TDatabase component to
handle certain tasks. So whenever
we change database values, we
must remember to change both the
application’s TDatabase component
as well as our own internal one.

Name overrides are registered
using the SetDatabaseName and Set-
ServerName methods. If MainDB has
already been set, we go ahead and

35

write these values into the TDat-
abase parameters. If we are setting
the value to an empty string, then
we write the original default value
in the TDatabase parameters.

Now that the building blocks are
in place, just exactly how do we get
the database overrides from the
application into TLoginManager?
There are a few different ap-
proaches depending on how you
want to define the overrides.

One possible technique is to
define overrides in an INI file that
resides with the EXE file. If the INI
filenames and contents are stand-
ardized across your product line,
you may want to embed the code
to read the INI file and call SetSer-
verName and SetDatabaseName in the
TLoginManager.Create method. This
has the advantage of further

0 Listing 1

TLoginManager = class(TComponent)
protected

FCallersDatabaseName: string;
FCallersServerName: string;
FDatabaseName: string
FServerName: string

function GetDBParamValue(ParamName: string): string;
procedure SetDBParamValue(ParamName, Value: string);

centralizing the business rules
regarding logins, but the disadvan-
tage that the override names can-
not be changed without a restart of
the application.

Another approach is to make
TLoginManager’s ServerName and
DatabaseName properties read/write
(by binding the SetServerName and
SetDatabaseName methods as write
methods), have the application
read the INI files, then set the
names as part of the TLoginManager
registration process.

The technique | have decided to
show you in this article is to add
server name and database name
arguments to the TLoginManager. -
Login method. This allows us to
provide edit controls or combo
boxes in the login dialog itself so
the user may select the server and
database they want each time they
login. The INI file approach still

procedure SetDatabaseName(Value: string); else

procedure SetServerName(Value: string);

public

property DatabaseName: string read FDatabaseName;
property ServerName: string read FServerName;

end;
implementation

else

end;

FServerName
FCallersDatabaseName :=
GetDBParamValue(’DATABASE NAME’);
if FDatabaseName <> ’’ then
SetDBParamValue(’DATABASE NAME’, FDatabaseName)

FDatabaseName

works too. The application reads
the INI file, stores the values and
passes them into the Login method
whenever it is called. This ap-
proach seems to provide the most
flexibility for various methods of
defining the override names.

Listing 2 shows the changes we
need to make to the Login method.
Note that a TDatabase component
must be disconnected before we
can change its parameters. So we
must set the override values after
we’ve logged out the previous user.

Remember that we’ve built these
methods such that if an empty
string is passed in, the default
names defined by the application
or the alias are used. So, if an appli-
cation does not support overrides,
or if we want it to reset to the
default values, we simply have to
pass in empty strings for the Server
and Database parameters.

{... Existing code omitted ...}
{ ServerName and/or DatabaseName overrides could
have been registered already. If not, then we must
make sure ServerName and DatabaseName properties
return the values given in the application’s
TDatabase component, or in the alias definition. }
FCallersServerName := GetDBParamValue(’SERVER NAME’);
if FServerName <> ’’ then
SetDBParamValue(’SERVER NAME’, FServerName)

:= FCallersServerName;

:= FCallersDatabaseName;

function TLoginManager.GetDBParamValue(
ParamName: string): string;
{ Returns the value for the given database parameter. }
var DBParams: TStringlList;
begin
{ First, check for specific values in the
application’s main TDatabase component. }
Result := FMainDB.Params.Values[ParamName];
{ Failing that, get value from alias definition. }
if Result = ’’ then begin
DBParams := TStringlList.Create;
try
Session.GetAliasParams(
FMainDB.AliasName, DBParams);

Result := DBParams.Values[ParamName];
finally
DBParams.Free;
end;
end;

end;

procedure TLoginManager.SetDBParamValue(
ParamName, Value: string);

begin
FMainDB.Params.Values[ParamName] := Value;
LoginDM.dbInternal.Params.Values[ParamName] := Value;
end;

procedure TLoginManager.SetMainDB(Value: TDatabase);
begin
if Value <> FMainDB then begin
FMainDB := Value;
LoginDM.dbInternal.AliasName := FMainDB.AliasName;

36 The Delphi Magazine

end;

procedure TLoginManager.SetDatabaseName(Value: String);
begin
FDatabaseName := ANSIUppercase(Value);
{ If MainDB has already been registered... }
if FMainDB <> nil then begin
if FMainDB.Connected or
LoginDM.dbInternal.Connected then
raise Exception.Create(
*Cannot set TLoginManager.DatabaseName once '+
*database is connected’);
if FDatabaseName = ’’ then
FDatabaseName := FCallersDatabaseName;
SetDBParamValue(’DATABASE NAME’, FDatabaseName);
end;
end;

procedure TLoginManager.SetServerName(Value: string);
begin
FServerName := ANSIUppercase(Value);
{ If MainDB has already been registered... }
if FMainDB <> nil then begin
if FMainDB.Connected or
LoginDM.dbInternal.Connected then
raise Exception.Create(
*Cannot set TLoginManager.ServerName once ’+
*database is connected’);
if FServerName = '’ then
FServerName := FCallersServerName;
SetDBParamValue(’SERVER NAME’, FServerName);
end;
end;

Issue 18

One final chore we must handle
is to clean up the password change
code to allow us to change the
password for the correct server
and database if overrides are
permitted.

If you recall from last month we
implemented the code that
changes the password in a DLL.
Now we must add two parameters
to the exported function to allow us
to pass in the optional server name
and database name overrides.
Inside the DLL function, we then
take these values into account
when setting up the DLL’s database
connection (see Listing 3). When
the function is called from
TLoginManager, we simply pass in
the values of FServerName and
FDatabaseName.

Handling Multiple Databases

You may have need for one or more
of your applications to access
more than one physical database
at a time. There are a number of
issues in handling the interaction
between TLoginManager and addi-
tional databases, most of which are
very closely tied to the specific
RDBMS platforms involved and ex-
actly how users are set up across
them. For our purposes here, we'll
only deal with connecting and dis-
connecting all the databases when
the user “logs in”. We’ll further
assume that the user has the same
username and password on all the
relevant databases. After getting
past this, we’ll discuss some of the
other issues and possible
techniques for addressing them.

procedure TLoginManager.Login(UserName, Password, Server, Database: string);

0 Listing 2
begin
Logout;
FUsername := Username;
FPassword := Uppercase(Password);

{ Deal with possible server/database name overrides }

SetServerName(Server);
SetDatabaseName(Database);

{ Connect to physical database }
Connect;

{... Existing code omitted for brevity ...

end;

O Listing 3

{ function interface }
function ChangePassword(iAliasName :
iDatabaseName : PChar; iUserName :
iNewPassword
{ code fragment from function body }
with TempDatabase do begin
AliasName := StrPas(iAliasName);

DatabaseName := ’PasswordChangeDB’;

PChar; iServerName :
PChar; i0ldPassword :

: PChar; var oErrMsg : PChar): Word; export;

}

PChar;
PChar;

{ The following lines were added for server/database overrides }

if Assigned(iServerName) and (StrPas(iServerName) <> ’’) then
Params.Values[’SERVER NAME’] := StrPas(iServerName);

if Assigned(iDatabaseName) and (StrPas(iDatabaseName) <> °’) then

Params.Values[’DATABASE NAME’]

:= StrPas(iDatabaseName);

Params.Values[’USER NAME’] := StrPas(iUserName);
Params.Values[PASSWORD’] := StrPas(iOldPassword);

LoginPrompt := False;
Connected := True;
end;

0 Listing 4

TDBList = class(TList)
public

function Add(Item: TDatabase): Integer;

end;

function TDBList.Add(Item: TDatabase):

begin
Result := inherited Add(Item);
end;

February 1997

Integer;

The Delphi Magazine

The concept we’re talking about
here is having two or more TDat-
abase components in your applica-
tion. One of these components
points to the “main” database, that
is, the database containing our
Users and AuditTrail tables. Thisis
the principal database users are
logged into by all applications. The
rest are ancillary databases con-
taining application data. Different
applications may have different
ancillary databases (or none), but
all will connect to the “main”
database.

Obviously, our main TDatabase
component is registered with
TLoginManager through the MainDB
property, just as we’ve been doing
allalong. As for the rest of the TDat -
abases, all we need to do is inform
TLoginManager of their presence to
allow it to control the setting of
their Connected properties.

We’ll use a TList field in TLogin-
Manager to keep track of all the TDat -
abases used by the program. We’ll
create a descendant component
class called TDBList as shown in
Listing 4 just so we can type-check
exactly what is put into the list.

Next, we’ll add a new property to
TLoginManager as shown in Listing5.
With this done, our calling applica-
tions will register their ancillary
databases as shown in Listing 6.

In order for anything to happen
with these additional databases,
we must extend the login and lo-
gout code to affect them as well.
Listing 7 shows the new Connect
and Disconnect methods we need
do this.

That’s all that is needed to have
TLoginManager automatically con-
nect and disconnect all registered
databases with the same username
and password. Obviously what you
have TLoginManager do with your
ancillary databases is very particu-
lar to what you want to do with
them. Let’s discuss some of the
possibilities.

The code we have now assumes
that the server and database name
overrides we talked about at the
beginning of this article only apply
to the “main” database. That might
be valid if, for example, your ancil-
lary databases are existing in-
house systems and you would

37

never have the possibility of over-
riding them. However, if the multi-
ple databases in your system are
inherent to its design and you can
assume all of them are on the same
server, you would want to modify
SetServerName to loop through
FApplicationDBs and override their
server names as well.

Another possibility is that the
user names or passwords might
not be the same across all data-
bases. You could extend the Users
table (or create an extra table) to
contain the corresponding user
names and passwords for the other
databases as well. TLoginManager. -
Connect could then use GetDBParam-
Value to examine the database
name for each ancillary database,
lookup a new username and pass-
word value, and pass them into
ConnectDB rather than passing
FUsername and FPassword.

What happens when a user
changes their password? That de-
pends on what you want to happen.
In the case where all user names
and passwords are the same
across all databases, you'll have to
change PASSWORD.DLL to accept
a list of databases rather than info
on just one database. You'll also
have to provide more extensive er-
ror handling to cover the possibil-
ity that not all of the password
changes were successful.

If different user names and pass-
words are used on different data-
bases, it might be best to just have
the “password change” function af-
fect the main database. Changing
passwords in other databases
would then be a function of those
other systems’ administration soft-
ware. Or, you could make more
elaborate password change dia-
logs to allow users to select the
database for which they are chang-
ing their password and write dedi-
cated code for each database.

If you decide to implement mul-
tiple database access, think very
carefully about how the different
databases interact and adjust the
TLoginManager code accordingly.

Conclusion
Thisis the end of our TLoginManager
component. My goal was to

show you some techniques for

38

centralizing business rules and
logic relevant to any database
system. Along the way we added a
lot of features that would have
been extremely difficult to handle
consistently across more than one
product had we not centralized the
code. By the way, all of the func-
tionality we’ve discussed has been
used in realworld projects
developed here at TurboPower.
Next month, we’ll look at the
other side of the login manager by
developing a system administrator
application which transparently
binds our Users table with the

O Listing 5

TLoginManager = class(TComponent)
{... Existing code omitted ...}
protected

FApplicationDBs: TDBList;
public
property ApplicationDBs: TDBList

RDBMS. We use this app to add,
change, or delete users and
both the native RDBMS and our
custom extensions are updated
accordingly.

Steve Troxell is a Senior Software
Engineer with TurboPower
Software. He can be reached by
email at stevet@tpower.com or on
CompusServe at 74071,2207

read FApplicationDBs write FApplicationDBs;

end;

constructor TLoginManager.Create(AOwner: TComponent);

begin
inherited Create(AOwner);
{... Existing code omitted ...}
FApplicationDBs := TDBList.Create;
end;
destructor TLoginManager.Destroy;
begin
FApplicationDBs.Free;
end;

0 Listing 6

procedure TfrmMain.FormCreate(Sender: TObject);

begin

{ Register the LoginManager component }

with LoginManager do begin
ApplicationID := 1;
MainDB := dbAppMain;

{ repeat following Tine for each ancillary database in the application }

ApplicationDBs.Add(dbPubs);

OnLogin := LoginManagerLogin;

OnLogout
OnBadLogin
OnPasswordExpired
end;
end;

0 Listing 7

procedure TLoginManager.Connect;
var I: Integer;
begin

LoginManagerlLogout;
LoginManagerBadLogin;
LoginManagerPasswordExpired;

ConnectDB(FMainDB, FUsername, FPassword);
for I := 0 to FApplicationDBs.Count - 1 do
ConnectDB(FApplicationDBs.Items[I], FUsername, FPassword);

end;

procedure TLoginManager.Disconnect;
var I: Integer;
begin

DisconnectDB(FMainDB);

for I := 0 to FApplicationDBs.Count - 1 do
DisconnectDB(FApplicationDBs.Items[I]);

end;

The Delphi Magazine

Issue 18

	Server/Database Overrides
	Handling Multiple Databases
	Conclusion

